Bài tập Toán Lớp 5 - Công việc chung (Có lời giải)
1. Một số đặc điểm của dạng toán về công việc làm đồng thời:
- Trong mỗi bài toán thường có một đại lượng không đổi như công việc cân làm xong, như
quãng đường cần đi, thể tích bể nước….Do đó, khi giả ta cần quy ước đại lượng không đổi
đó làm đơn vị.
- Trong dạng toán này thường có vấn đề “Làm chung, làm riêng”. Trong các bài toán đó,
giá trị phải tìm có thể không phụ thuộc vào một đại lượng nào đó.
2. Một số kiểu bài toán về “Công việc làm đồng thời”.
Sau đây tôi trình bày một số kiểu bài về dạng toán về công việc làm đồng thời và tóm
tắthệ thống câu hỏi, quy trình giải, bài giải (trong đó có một số bai tôi trình bày theo hai
cách giải)
- Trong mỗi bài toán thường có một đại lượng không đổi như công việc cân làm xong, như
quãng đường cần đi, thể tích bể nước….Do đó, khi giả ta cần quy ước đại lượng không đổi
đó làm đơn vị.
- Trong dạng toán này thường có vấn đề “Làm chung, làm riêng”. Trong các bài toán đó,
giá trị phải tìm có thể không phụ thuộc vào một đại lượng nào đó.
2. Một số kiểu bài toán về “Công việc làm đồng thời”.
Sau đây tôi trình bày một số kiểu bài về dạng toán về công việc làm đồng thời và tóm
tắthệ thống câu hỏi, quy trình giải, bài giải (trong đó có một số bai tôi trình bày theo hai
cách giải)
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập Toán Lớp 5 - Công việc chung (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bai_tap_toan_lop_5_cong_viec_chung_co_loi_giai.pdf
Nội dung text: Bài tập Toán Lớp 5 - Công việc chung (Có lời giải)
- TOÁN CÔNG VIỆC CHUNG LỚP 5 1. Một số đặc điểm của dạng toán về công việc làm đồng thời: - Trong mỗi bài toán thường có một đại lượng không đổi như công việc cân làm xong, như quãng đường cần đi, thể tích bể nước .Do đó, khi giả ta cần quy ước đại lượng không đổi đó làm đơn vị. - Trong dạng toán này thường có vấn đề “Làm chung, làm riêng”. Trong các bài toán đó, giá trị phải tìm có thể không phụ thuộc vào một đại lượng nào đó. 2. Một số kiểu bài toán về “Công việc làm đồng thời”. Sau đây tôi trình bày một số kiểu bài về dạng toán về công việc làm đồng thời và tóm tắthệ thống câu hỏi, quy trình giải, bài giải (trong đó có một số bai tôi trình bày theo hai cách giải) 2.1. Kiểu bài: Biết thời gian làm riêng một công việc, yêu cầu tìm thời gian làm công việc chung đó. 2.1.1. Tóm tắt quy trình giải: Bước 1: Quy ước một đại lượng (như công việc cần hoàn thành, quãng đường cần đi, thể tích của bể nước, ) là đơn vị. Bước 2: Tính số phần công việc làm riêng trong một giờ. Bước 3: Tính số phần công việc làm chung trong một giờ. Bước 4: Tính thời gian làm chung để hoàn thành công việc đó. (Đây là tóm tắt các bước giải của một bài toán cơ bản còn căn cớ vào tưng bài toán cụ thể để có thể phân tích đưa về dạng cơ bản giúp học sinh giải được tốt hơn. 2.1.2. Một số bài tập cụ thể: +Bài tập 1. Hai người thợ nhận làm chung một công việc. người thứ nhất làm một mình thì hoàn thành xong công việc trong 4 giờ. Người thợ thứ hai làm một mình thi hoàn thành xong công việc đó trong 6 giờ. Hỏi cả hai người thợ cùng làn chung thì hoàn thành công việc đó mất bao lâu? a/ Tóm tắt hệ thống câu hỏi: - Bài toán cho biết gì? (Thời gian của mỗi người làm hoàn thành một công viẹc chung) - Bài toán hỏi gì? (Thời gian cả hai ngươnì cùng làm chung hoàn thành xong công việc đó). 1
- - Để biết được cả hai người thợ cùng làm chung thì hoàn thành xong công việc đó mất bao lâu, thì ta cần phải biết gì? (phải biết trong một giờ cả hai người cùng làm được mấy phần của công việc) - Muốn biết trong một giờ cả hai người cùng làm được mấy phần của công việc ta phải làm gì? (Ta tính trong 1 giờ mỗi người làm được mấy phần công việc) - Để tính được trong một giờ mỗi người làm được mấy phần của công việc, ta làm thế nào? (Ta lấy công việc càn hoàn thành chia cho thời gian mỗi người làm hoàn thành công việc đó). b/ Quy trình giải: Bước 1: Quy ước công việc cần làm hoàn thành là đơn vị. Bước 2: Tìm trong một giờ người thứ nhất làm một mình thì được mấy phần của công việc. - Tính trong một giờ người thợ thứ hai làm một mình thì được mấy phần công việc. Bước 3: Tính trong 1 giờ cùng làm thì được mấy phần của công việc. Bước 4. Tính được thời gian cả hai thợ cùng làm xong công việc, ta lấy công việc cần hoàn thành (đơn vị) chia cho số phần công việc cả hai người cùng làm trong một giờ. Bài giải: * Ta quy ước công việc cần hoàn thành là đơn vị. 1 Trong 1 giờ người thợ thứ nhất làm một mình được: 1: 4 ( công việc) 4 1 Trong 1 giờ người thợ thứ hai làm một mình được: 1: 6 ( công việc) 6 1 1 5 Trong 1 giờ cả hai người cùng làm được: ( công việc) 4 6 12 Thời gian để hai người cùng làm chung hoàn thành xong công việc đó là: 5 12 1: ( giờ) 12 5 12 giờ = 2giờ 24 phút 5 Đáp số: 2giờ 24 phút Cách 2: Ta thấy 12 là số nhỏ nhất vừa chia hết cho 4 vừa chia hết cho 6. Vậy ta biểu thị số công việc đó thành 12 phần bằng nhau thì: Trong 1 giờ người thợ thứ nhất làm một mình được: 12 : 4 3 (Phần) 2
- Trong 1 giờ người thợ thứ hai làm một mình được: 12 : 6 2 (phần) Trong 1 giờ cả hai người cùng làm được: 3 2 5 (Phần) Thời gian để hai người cùng làm chung hoàn thành xong công việc đó là: 12 : 5 2,4 (giờ) 2,4 giờ = 2 giờ 24 phút Đáp số: 2 giờ 24 phút + Bài tập 2: Người thợ thứ nhất đi từ á đến B hêt7 giờ. Người thợ thứ hai đi từ B về A thì hết 5 giờ. Hổi nếu cùng một lúc, người thợ thứ nhất đi từ A và người thợ thứ hai đi từ B thì sau bao lâu họ gặp nhau? a/ Tóm tắt hệ thống câu hỏi: - Bài toán cho biết gì? (Thời gian của mỗi người đi hết quãng đường AB) - Bài toán hỏi gì? (Nếu cùng một lúc người thứ nhất đi từ A đến B và người thứ hai đi từ B về A thì sau bao lâu họ gặp nhau) - Để biết thời gian lúc họ xuất phát đến lúc gặp nhau thì ta phải biết gì? (ta phải biết trong một giờ cả hai cùng đi người thứ nhất đi từ A và người thứ hai đi từ B thì được bao nhiêu phần quãng đường AB) - Để biết được trong 1 giờ cả hai người cùng đi thì được bao nhiêu phần quãng đường AB ta phải biết gì? (Phải biết trong 1 giờ mỗi người đi được bao nhiêu phần Quãng đường AB) - Để tính được trong 1 giờ mỗi người đi được bao nhiêu phần quãng đường AB, ta làm thế nào? (Lấy quãng đường AB (đơn vị) chia cho thời gian mỗi người đi hết quãng đường AB) b/ Quy trình giải: Bước 1: Ta quy ước quãng đường AB là đơn vị. Bước 2: Tính trong 1 giờ người thứ nhất đi được bao nhiêu phần quãng đường AB. Tính trong 1 giờ người thứ hai đi được bao nhiêu phần quãng đường AB. Bước 3: Tính trong 1 giờ cả hai người cùng đi (người thứ nhất đi từ A đến B và người thứ hai đi từ B về A) Thì được bao nhiêu phần quãng đường AB. Bước4: Tính thời gian hai người gặp nhau. c/ Bài giải: Ta quy ước quãng đường AB là đơn vị 3
- 60 : 6 10( phút) Đáp số: 10 phút. Bài tập 7: Ba máy cày cùng cày trên một cánh đồng. Nếu chỉ một mình thì: máy thứ nhất cày xong cả cánh đồng trong 4 giờ, máy thứ hai cày xong cánh đồng trong 5 giờ, máy thứ ba cày xong cánh đồng trong 8 giờ. Song thực tế trong 2 giờ đầu chỉ có máy thứ nhất và máy thứ hai làm việc, sau đó hai máy này nghỉ và máy thứ ba làm đến hết. Hãy tính xem máy thứ ba phải cày thêm bao nhiêu lâu nữa mới xong cánh đồng? => Hướng dẫn học sinh giải ( cách 1) - Bài toán cho biết gì? (Thời gian mỗi máy cày xong cánh đồng, biết thời gian máy thứ nhất và máy thứ hai cùng làm trong hai giờ sau đó nghỉ, máy thứ ba tiếp tục làm đến hết) - Bài toán hỏi gì? (Thời gian máy thứ ba tiếp tục cày đến khi xong cánh đồng). - Muốn biết thời gian máy thứ ba tiếp tục cày đến khi xong cách đồng, thì ta phải biết gì? (biết số phần công việc máy thứ ba phải cày và số phần công việc máy thứ ba làm trong 1 giờ) - Muốn biết số phần công việc máy thứ ba phải cày, ta phải biết gì? (biết số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ) - Để biết được số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ ta phải biết gì? (phải biết số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ) - Để biết số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ thì ta phải biết gì? (số phần công việc trong 1giờ mỗi máy làm được) Bài giải: - Quy ước cánh đồng cần cày xong là đơn vị. Mỗi giờ máy thứ nhất cày được: 1: 4 0,25 (cánh đồng) Mỗi giờ máy thứ hai cày được: 1: 5 0,2 (cánh đồng) Mỗi giờ cả hai máy đó cùng cày được: 0,25 0,2 0,45 (cánh đồng) Trong hai giờ cả hai máy đó cày được: 0,45 2 0,9 (cánh đồng) Số phần đất máy thứ ba phải cày là: 1 0,9 0,1 (cánh đồng) Mỗi giờ máy thứ ba cày được: 1: 8 0,125 (cánh đồng) 11
- Thời gian máy thứ ba phải cày là: 0,1: 0,125 0,8 ( giờ) 0,8 giờ = 48 phút Đáp số: 48 phút => Hướng dẫn học sinh giải (cách 2) - Hệ thống câu hỏi tương tự cách 1 nhưng có khác nhau là: ở cách 1 thì ta quy ước cánh đồng cần cày xong là đơn vị cón ở cách hai thì ta chia cánh dồng cần cày xong đó thành các phần bằng nhau và bằng số nhỏ nhất chia hết cho các thời gian mỗi máy cày một mình cày xong sân trường. Sau đó quy trình giải như cách 1. Bài giải: Ta thấy 40 là số nhỏ nhất (khác 0) vừa chia hết cho cả 4; 5 và 8. vậy ta biểu thị cánh đồng đó thành 40 phần bằng nhau. Trong 1 giờ máy thứ nhất cày được: 40 : 4 10 ( phần cánh đồng) Trong 1 giờ máy thứ hai cày được: 40 : 5 8 ( phần cánh đồng) Trong 1 giờ máy thứ nhất và máy thứ hai cùng cày được: 10 8 18( phần cánh đồng) Trong 2 giờ máy thứ nhất và máy thứ hai cùng cày được: 18 2 36 ( phần cánh đồng) Vậy máy thứ hai còn phải cày tiếp để cày xong cánh đồng là: 40 36 4( phần cánh đồng) Trong 1 giờ máy thứ ba cày được: 40 : 8 5 ( phần cánh đồng) Thời gian để máy thứ ba cày xong cánh đồng là: 4 : 5 0,8 (giờ) 0,8 giờ = 48 phút Đáp số: 48 phút * Lưu ý: ở bài tập 1,2,3 là các bài tập ở dạng cơ bản, còn đối với bài tập 4, 5,6,7 được nâng cao ở mức độ khó hơn. Do đó, khi hướng dẫn học sinh giải giáo viên cần cho học sinh nhận ra mối quan hệ giữa chúng và chọn ra cách giải phù hợp với từng bài để thuận tiện cho việc thực hiện bài giải. + Vậy qua các bài tập từ 1 đến 7, tôi đã hướng dẫn cho học sinh rút ra được quy trình giải bài toán như sau: 12
- Tóm tắt quy trình giải: Cách 1: Bước 1: Ta quy ước một đại lượng không đổi (công việc cần hoàn thành, quãng đường cần đi, thể tích của bể, .) là đơn vị. Bước2: Tính số phần công viẹc làm riêng trong 1 giờ (bằng cách lấy đơn vị “ 1” chia cho thời gian làm riêng trong 1 giờ). Bước 3: Tính số phần công việc làm chung trong 1 giờ (bằng cách tính tổng số phần công việc làm riêng trong 1 giờ) Bước 4: Tính thời gian làm chung để hoàn thành công việc đó (bằng cách lấy đơn vị chia cho số phần công việc làm chung trong 1 giờ) (Đây là bước tóm tắt các bước giải của một bài toán cơ bản còn căn cứ vào từng bài toán cụ thể để phân tích đưa về dạng cơ bản giúp học sinh giải được tốt hơn). Cách 2: Bước 1: Ta biểu thị công việc chung đó thành các phần bằng nhau (bằng số nhỏ nhất (khác 0) vừa chia hết cho các thời gian làm riêng công việc chung đó) Bước 2: tính số phần công việc làm riêng trong 1 giờ (bằng cách lấy số phần công việc chung chia lần lượt cho thời gian làm riêng công việc chung đó). Bước 3: Tính số phần công việc làm chung trong 1 giờ (bằng cách tính tổng số phần công việc làm riêng trong 1 giờ). Bước 4: Tính thời gian làm chung để hoàn thành công việc đó (bằng cách lấy số phần của công việc chia cho số phần công việc làm chung trong 1 giờ). Tóm lại: Trong hai cách giải trên thì cách thứ hai hoc sinh dễ thực hiện hơn bởi vì chủ yếu là thực hiện dấu hiệu chia hết và thực hiện phép tính về số tự nhiên. Tuy nhiên tuỳ từng loại bài cụ thể để giúp giúp học sinh chọn cách nào thuận tiện hơn trong công việc giải toán. Kiểu 2: Biết thời gian cùng chung hoàn thành xong công việc và thời gian làm riêng(đã biết) Hoàn thành xong công việc đó, yêu cầu tính thời gian là riêng (chưa biết) xong công việc đó. + Bài tập 8: 13
- Hai người cúng là chung một công việc thì sau 5 giờ sẽ xong. Nếu một mình người thợ cả làm thì phải làm 8 giờ mới xong. hỏi người thợ thứ hai làm một mình sau bao lâu sẽ xong công việc đó? => Hướng dẫn học sinh giải( cách 1) - Bài toán cho biết gì? (thời gian hai người cùng làm chung công việc, biết thời gian người thợ cả làm một mình xong công việc đó) - Bài toán hỏi gì? (thời gian một mình người thợ thứ hai làm xong công việc đó) - muốn biết thời gian một mình người thợ thứ hai làm xong công việc đó ta phải biết gì? (trong 1 giờ người thợ thứ hai làm được bao nhiêu phấn của công việc). - Để biết trong 1 giờ người thợ thứ hai làm được bao nhiêu phấn của công việc ta phải là làm thế nào? (Lấy số phần công việc cả hai người làm trong 1 giờ trừ đi số phần công việc của người thợ cả làm trong 1 giờ)- Muốn biết số phần công việc làm trong 1 giờ ta làm thế nào? (ta lấy công việc cần hoàn thành chia cho thời gian làm hoàn thành công việc đó) Bài giải: Ta quy ước công việc cần là xong là đơn vị. 1 Trong 1 giờ cả hai người thợ cùng làm được: 1: 5 ( công việc) 5 1 Trong 1 giờ người thợ cả làm được: 1: 8 ( công việc) 8 1 1 3 Trong 1 giờ người thợ thứ hai làm được: ( công việc) 5 8 40 Thời gian người thợ thứ hai làm một mình xong công việc đó là: 3 40 1: ( giờ) 40 3 40 giờ = 13 giờ 20 phút 3 Đáp số : 13 giờ 20 phút => Hướng dẫn học sinh giải (cách 2): * Hệ thống câu hỏi tương tự cách 1 nhưng có khác nhau là: ở cách 1 thì ta quy ước công việc cần làm xong là đơn vị, còn ở cách 2 thì ta chia công việc cần làm xong đó thành các phần bằng nhau và bằn số nhò nhất chia hết cho các thời gian cùng làm chung và một mình làm xong công việc đó. 14
- Sau đây là quy trình giải Bài giải: Ta thấy 40 là số nhỏ nhất (khác 0) vừa chia hết cho cả 5 và 8, vậy ta biểu thị công việc chung đó thành 40 phần bằng nhau. Do đó: Trong 1 giờ cả hai người thợ cùng làm được: 40 : 5 8 (Phần) Trong 1 giờ người thợ cả làm được: 40 : 8 5 (Phần) Trong 1 giờ người thợ thứ hai làm được: 8 5 3 (Phần) Thời gian người thợ thứ hai làm một mình xong công việc đó là: 40 40 : 3 ( giờ) 3 40 giờ = 13 giờ 20 phút 3 Đáp số : 13 giờ 20 phút + Bài tập 9: Cả ba vòi nước cùng chảy vào một cái bể sau 3 gời thì đầy. Nếu vòi thứ nhất chảy một mình thì phải mất 8 giờ mới đầy bể. Nếu vòi thứ hai chảy một mình thì phải mất 12 giờ mới đầy bể. Hỏi vòi thứ ba chảy một mình thì phải mất bao lâu mới đầy bể? => Hướng dẫn học sinh phân tích bài toán (cách1) Khai thác tương tự bài tập 8 (song yêu câù học sinh tính được trong 1 giờ cả vòi thứ nhất và vòi thứ hai cùng chảy được mấy phần của bể để chuyến về dạng bài tập 8) Bài giải: Ta quy ước thể tích của bể là đơn vị. Ta có: 1 Trong 1 giờ cả ba vòi cùng chảy được: 1: 3 (bể nước) 3 1 Trong 1 giờ vòi thứ nhất chảy được: 1: 8 (bể nước) 8 1 Trong 1 giờ vòi thứ hai chảy được: 1:12 (bể nước) 12 1 1 5 Trong 1 giờ cả vòi thứ nhất và vòi thứ hai cùng chảy được: (bể nước) 8 12 24 1 5 1 Trong 1 giờ vòi thứ hai chảy được: (bể nước) 3 24 8 15
- 1 Thời gian thời vòi thứ ba chảy một mình đầy bể là: 1: 8 (giờ) 8 Đáp số: 8 giờ. => Hướng dẫn học sinh phân tích bài toán (cách2) (Hướng dần tương tự bài tập 8) Bài giải: Ta thất 24 là số nhỏ nhất (khác 0) vừa chia hết cho cả 3; 8 và 12. vậy ta biểu thị thể tích bể nước thành 24 phần bằng nhau. Do đó: Trong 1 giờ cả ba vòi cùng chảy được 24 : 3 8 (phần) Trong 1 giờ vòi thứ nhất chảy được: 24 : 8 3 (phần) Trong 1 giờ vòi thứ hai chảy được: 24 :12 2 (phần) Trong 1 giờ cả vòi thứ nhất và vòi thứ hai cùng chảy được: 3 2 5 (phần) Trong 1 giờ vòi thứ hai chảy được: 8 5 3 (phần) Thời gian thời vòi thứ ba chảy một mình đầy bể là: 24 : 3 8 ( giờ) Đáp số: 8 giờ. Bài tập 10: Hai người cùng làm chung nhau một công việc thì sau 8 sẽ xong. Sau khi cùng làm được 5 giờ thì người thứ nhất bận không làm tiếp được nữa, một mình người thứ hai phải làm trong 9 giờ mới xong chỗ công việc còn lại. Hỏi nếu mỗi người làm một mình thì mất bao lâu? => Hướng dẫn học sinh phân tích bài toán ( cách1) - Bài toán cho biết gì? (thời gian hai người cùng làm chung xong công việc, biết hai người cùng làm chung công việc đó trong một thời gian sau đo một người nghỉ và thời gian người còn lại cần phải làm xong công việc). - Bài toán hỏi gì? (Thời gian mỗi người làm xong công việc đó một mình) - Để biết thời gian mỗi người làm xong công việc đó một mình, ta phải biết gì? (biết trong 1 giờ người thứ hai làm được mấy phần của công việc). - Muốn biết trong 1 giờ người thứ hai làm xong được mấy phần của công việc, ta phải biết gì? (phải biết số phần công việc cả hai người cùng làm trong 1 giờ) 16
- - Muốn biết số phần công việc cả hai người cùng làm trong 1 giờ, ta phải làm thế nào? ( Ta lấy đơn vị - công việc cần làm – chia cho thời gian cả hai người cùng làm chung xong công việc) Bài giải: Quy ước công việc cần hoàn thành là đơn vị. 1 Trong 1 giờ cả hai người cùng làm được: 1: 8 ( công việc) 8 1 5 Trong 5 giờ cả hai người cùng làm được: 5 ( công việc) 8 8 5 3 Phần công việc còn lại người thứ hai phải làm một mình: 1 ( công việc) 8 8 3 1 Số phần công việc người thứ hai làm trong 1giờ: : 9 ( giờ) 8 24 Thời gian để người thứ hai làm một mình làm xong công việc đó là: 1 1: 24 ( giờ) 24 1 1 1 Số phần công việc người thứ nhất làm trong 1 giờ là: ( công việc) 8 24 12 Thời gian để người thứ nhất làm một mình làm xong công việc đó là: 1 1: 12 ( giờ) 12 Đáp số: Người thứ nhất: 12 giờ Người thứ hai: 24 giờ. => Hướng dẫn học sinh phân tích bài toán (cách2) (Hướng dẫn tương tự bài tập 9) Bài giải: Ta thấy 40 là số nhỏ nhất (khác 0) chia hết cho cả 5 và 8. Do đó ta biểu thị công việc chung đó thành 40 phần bằng nhau. Vậy, Trong 1 giờ cả hai người cùng làm được: 40 : 8 5 (phần) Trong 5 giờ cả hai người cùng làm được: 5 5 25 ( phần) Phần công việc còn lại người thứ hai phải làm một mình: 40 25 15 ( phần) 5 Số phần công việc người thứ hai làm trong 1giờ: 15 : 9 ( công việc) 3 17
- 5 Thời gian để người thứ hai làm một mình làm xong công việc đó là: 40 : 24 (giờ) 3 5 10 Số phần công việc người thứ nhất làm trong 1 giờ là: 5 ( công việc) 3 3 Thời gian để người thứ nhất làm một mình làm xong công việc đó là: 10 40 : 12 (giờ) 3 Đáp số: Người thứ nhất: 12 giờ Người thứ hai: 24 giờ. * L ưu ý: ở bài tập 8, 9, 10 cũng có thể hướng dẫn học sinh theo hai cách khác nhau. Quy trình giải như sau: @. Cách1: Bước 1. - Quy ước đại lượng không đổi là đơn vị. Bước2. - Tính số phần công việc làm chung trong 1 giờ ( bằng cách lấy đơn vị chia cho thời gian làm chung công việc đó). Bước 3. – Tính số phần công việc làm riêng (đã biết thời gian làm riêng ) trong 1giờ (bằng cách lấy đơn vị chia cho thời gian làm riêng công việc đó). Bước 4. – Tính số phần công việc làm riêng trong 1 giờ ( bằng cách lấy số phần công việc làm – công việc đó- trong 1giờ trừ đi số phâng công việc làm riêng – công việc đó- trong 1 giờ) Bước 5. – Tính thời gian làm riêng hoàn thành công việc ( bằng cách lấy đơn vị chia cho số phần công việc làm riêng trong 1 giờ). @. Cách 2: Bước 1: biểu thị công việc làm đồng thời - công việc chung - đó thành các phần bằng nhau bằng số tự nhiên nhỏ nhất (khác 0) chia hết cho cả thời gian làm chung công việc và thời gian làm riêng công việc (đã biết). Bước 2. – Tính số phần công việc làm chung trong 1 giờ ( bằng cách lấy số phần của công việc làm chung chia cho thời gian làm chung công việc đó). Bước 3. Tính số phần công việc làm riêng ( biết thời gian làm riêng) trong 1 giờ ( bằng cách lấy số phần của công việc chung chia cho thời gian làm riêng công việc đó) 18
- Bước 4. Tính số phần công việc làm riêng trong 1 giờ ( bằng cách lấy số phần làm chung công việc đó trong 1 giờ trừ đi số phần làm riêng công việc đó trong 1 giờ) Bước 5. Tính thời gian làm riêng hoàn thành công việc ( bằng cách lấy số phần của công việc chung chia cho số phần công việc làm riêng trong 1 giờ). * Lưu ý: Giữa cách 1 và cách 2 đèu có quy trình giải tương đối giống nhau sonh ở cách 1 ta quy ước công việ làm đồng thời là đơn vị còn ở cách 2 ta lại biểu thị công việc đó thành các phần bằng nhau và bằng số nhỏ nhất chia hết cho cả thời gian làm chung và làm riêng công việc đó, sau đó tiếp tục thực hiện bài giải nhơ các bước 2; 3; 4; 5 theo mỗi các trên. Bài tập 11: Thành và Công cùng làm chung nhau một công việc thì sau 48 phút sẽ xong. Cũng công việc đó, Thành làm một mình trong 65 phút, sau đó Công làm trong 28 phút thì hoàn thành. Hỏi Thành làm một mình toàn bộ công việc thì mất bao nhiêu phút? =>Hướng dẫn học sinh giải - Bài toán cho biết gì? - Bài toán hỏi gì? Bài toán này có gì đặc biệt?Thời gian Thành làm một mình trong 65 phút, sau đó Công làm tiếp để hoàn thành công việc thì mất 28 phút, (vì 65 - 28 =35) nên ta có thể coi Thành và Công cùng làm chung công việc đó trong thời gian 28 phút sau đó Công nghỉ thời gian còn lại là 35 phút Thành làm một mình đến xong công việc). đ ến đây ta chuyển bài toán về tương tự bài toán 10 (Hệ thống câu hỏi và cách giải tương tự bài toán 10). Bài giải: Ta quy ước công việc cần làm xong là đơn vị. 1 Trong 1 phút Thành và Công cùng làm được: 1: 48 ( công việc) 48 Vì 63 – 28 = 35 nên ta có thẻ coi coi Thành và Công cùng làm trong 28 phút, ta có: 1 7 Trong 28 phút Thành và Công cùng làm được: 28 ( công việc) 48 12 7 5 Trong 35 phút Thành làm một mình được: 1 ( công việc) 12 12 19
- 5 1 Trong 1 phút Thành làm một mình được: : 35 ( công việc) 12 84 Nếu Thành làm một mình toàn bộ công việc thì hoàn thành trong thời gian là: 1 1: 84 ( phút) 84 84 phút = 1 giờ 24 phút. Đáp số: 1 giờ 24 phút Bài tập 12: Hai vòi cùng chảy vào bể không có nước, sau 10 giờ thì đầy bể. Nếu vòi thứ nhất chảy 13 trong 4giờ, vòi thứ hai chảy trong 7 giờ thì được bể. Hỏi mỗi vòi chảy một mình thì sau 20 bao lâu sẽ đầy bể? => Hướng dẫn học sinh giải: (Tương tự bài tập 11) Bài giải: 1 Trong 1 giờ cả hai vòi cùng chảy được: 1:10 ( bể nước) 10 Thời gian vòi thứ hai chảy lâu hơn vòi thứ nhất là: 7 4 3( giờ) 1 2 Trong 1 giờ cả hai vòi cùng chảy được: 4 ( bể nước) 10 5 13 2 1 Trong 3 giờ vòi thứ hai chảy được: ( bể nước) 20 5 4 1 1 Trong 1 giờ vòi thứ hai chảy được: : 3 ( bể nước) 4 12 1 Thời gian để vòi thứ hai chảy một mình đầy bể: 1: 12 ( giờ) 12 1 1 1 Trong 1 giờ vòi thứ nhất chảy được: ( bể nước) 10 12 60 1 Thời gian để vòi thứ nhất chảy một mình đầy bể: 1: 60 ( giờ) 60 Đáp số : Vòi thứ nhất: 60 giờ Vòi thứ hai: 12 giờ 20
- Bài 13: Ba vòi cùng chảy vào bể không có nước trong 2 giờ, sau đó tắt vòi thứ nhất để hai vòi còn lại tiếp tục chảy trong 1 giờ rồi tắt vòi thứ hai. Hỏi vòi thứ ba phải chảy them bao nhiêu giờ nữa thì đầy bể? Biết rằng: nếu chảy riêng từng vòi vào bể không có nước thì vòi thứ nhất chảy đầy bể trong 9 giờ, vòi thứ hai chảy đầy bể trong 12 giờ, vòi thứ ba chảy đầy bể trong 18 giờ. => Hướng dẫn học sinh giải (Tương tự các bài trên) Bài giải: Ta quy ước thể tích của bể nước là đơn vị. 1 Trong 1 giờ vòi thứ nhất chảy được: 1: 9 ( bể nước) 9 1 Trong 1 giờ vòi thứ hai chảy được: 1:12 ( bể nước) 12 1 Trong 1 giờ vòi thứ ba chảy được: 1:18 ( bể nước) 18 1 1 1 1 Trong 1 giờ cả ba vòi cùng chảy được: ( bể nước) 9 12 18 4 1 1 Trong 2 giờ cả ba vòi cùng chảy được: 2 ( bể nước) 4 2 1 1 23 Trong 1 giờ vòi thứ hai và vòi thứ ba cùng chảy đươc: ( bể nước) 12 18 36 23 1 23 Thời gian vòi thứ ba chảy thêm để đầy bể là: : ( giờ) 36 18 2 23 giờ = 11giờ 30 phút. 2 Đáp số: 11giờ 30 phút. * Tóm lại: Các bài tập 11; 12;13 được mở rộng, nâng cao từ các bài toán ở dạng cơ bản (bài 8; 9; 10) do đó, giáo viên cần gợi ý cho học sinh phân tích để biến đổi đưa về dạng cơ bản. * Kiểu 3: Cho thời gian làm riêng công việc và tổng thời gian hai người làm liên tiếp để xong công việc, yêu cầu tính thời gian mỗ người làm. (kiểu nay thường phối hợp nhiều phương pháp giải). 21
- Bài tập 14: Có một công việc, nếu Sơn làm một mình thì hết 10 giờ; nếu Dương làm một mình thì hết 15 giờ. Lúc đầu, Sơn làm rồi nghỉ sau đó Dương làm tiếp cho đến khi xong việc. Hai bạn làm hết 11 giờ. Hỏi mỗi ban làm trong mấy giờ? => Hướng dẫn học sinh giải. - Tính số phần công việc Sơn làm trong 1 giờ. - Tính số phần công việc Dương làm trong 1 giờ. - Vì hai bạn làm liên tiếp xong công việc trong 11 giờ. Giả sử Dương làm một mình trong cả 11 giờ thì làm được bao nhiêu phần công việc. - Tính số phần công việc còn lại chưa làm xong. - Tính số phần công việc mỗi giờ Sơn làm nhiều hơn Dương. - Tính thời gian Sơn làm. - Tính thời gian Dương làm. Bài giải: 1 Mỗi giờ Sơn làm được số phần công việc là: 1:10 (công việc) 10 1 Mỗi giờ Dương làm được số phần công việc là: 1:15 (công việc) 15 Giả sử Dương làm một mình trong cả 11 giờ thì làm được số phần công việc là(1): 1 11 11 (công việc) 15 15 11 4 Khi đó số phần công việc còn lại chưa làm xong là: 1 (công việc) 15 15 Sở dĩ có phần công việc chưa làm xong là do ta thay số giờ Sơn làm Bằng số giờ Dương làm. 1 1 1 Mỗi giờ Sơn làm được nhiều hơn Dương là: (công việc) 10 15 30 4 1 Thời gian Sơn làm là: : 8 (giờ) 15 30 Thời gian Dương làm là: 11 8 3 (giờ) Đáp số: Sơn: 8 giờ; Dương: 3 giờ. ((1) giải bằng phương pháp giả thiết tạm) 22